UI Hall of Fame or Shame?

- Dialog box
 - ask if you want to delete

UI Hall of Shame!

- Dialog box
 - ask if you want to delete

- Problems?
 - use of color problematic
 - Yes (green), No (red)
 - R-G color deficiency
 - cultural mismatch
 - Western
 - green good
 - red bad
 - Eastern & others differ

Outline

- Why do user testing?
- Choosing participants
- Designing the test
- Collecting data
- Analyzing the data
- Automated evaluation

Why do User Testing?

- Can’t tell how good UI is until?
 - people use it!
- Expert review methods are based on evaluators who:
 - may know too much
 - may not know enough (about tasks, etc.)
- Hard to predict what real users will do
Choosing Participants
• Representative of target users
 – job-specific vocab / knowledge
 – tasks
• Approximate if needed
 – system intended for doctors?
 • get medical students or nurses
 – system intended for engineers?
 • get engineering students
• Use incentives to get participants

Ethical Considerations
• Usability tests can be distressing
 – users have left in tears
• You have a responsibility to alleviate
 – make voluntary with informed consent (form)
 – avoid pressure to participate
 – let them know they can stop at any time
 – stress that you are testing the system, not them
 – make collected data as anonymous as possible
• Often must get human subjects approval

User Test Proposal
• A report that contains
 – objective
 – description of system being testing
 – task environment & materials
 – participants
 – methodology
 – tasks
 – test measures
• Get approved & then reuse for final report
• Seems tedious, but writing this will help “debug” your test

Selecting Tasks
• Should reflect what real tasks will be like
 – Tasks from analysis & design can be used
 – may need to shorten if
 • they take too long
 • require background that test user won’t have
• Try not to train unless that will happen in real deployment
• Avoid bending tasks in direction of what your design best supports
• Don’t choose tasks that are too fragmented
 – e.g., phone-in bank test

Two Types of Data to Collect
• Process data
 – observations of what users are doing & thinking
• Bottom-line data
 – summary of what happened (time, errors, success)
 – i.e., the dependent variables

Which Type of Data to Collect?
• Focus on process data first
 – gives good overview of where problems are
• Bottom-line doesn’t tell you
 – where to fix
 – just says: “too slow”, “too many errors”, etc.
• Hard to get reliable bottom-line results
 – need many users for statistical significance
The “Thinking Aloud” Method

- Need to know what users are thinking, not just what they are doing
- Ask users to talk while performing tasks
 - tell us what they are thinking
 - tell us what they are trying to do
 - tell us questions that arise as they work
 - tell us things they read
- Make a recording or take good notes
 - make sure you can tell what they were doing

Thinking Aloud (cont.)

- Prompt the user to keep talking
 - “tell me what you are thinking”
- Only help on things you have pre-decided
 - keep track of anything you do give help on
- Recording
 - use a digital watch/clock
 - take notes, plus if possible
 - record audio & video (or even event logs)

Using the Test Results

- Summarize the data
 - make a list of all critical incidents (CI)
 - positive & negative
 - include references back to original data
 - try to judge why each difficulty occurred
- What does data tell you?
 - UI work the way you thought it would?
 - users take approaches you expected?
 - something missing?

Using the Results (cont.)

- Update task analysis & rethink design
 - rate severity & ease of fixing CIs
 - fix both severe problems & make the easy fixes

Will Thinking Aloud Give the Right Answers?

- Not always
- If you ask a question, people will always give an answer, even if it is nothing to do with facts
 - pantyhose example
- Try to avoid specific questions
Analyzing the Numbers

• Example: trying to get task time ≤ 30 min.
 – test gives: 20, 15, 40, 90, 10, 5
 – mean (average) = 30
 – median (middle) = 17.5
 – looks good!
• Did we achieve our goal?
• Wrong answer, not certain of anything!
• Factors contributing to our uncertainty?
 – small number of test users (n = 6)
 – results are very variable (standard deviation = 32)
 • std. dev. measures dispersal from the mean

Measuring Bottom-Line Usability

• Situations in which numbers are useful
 – time requirements for task completion
 – successful task completion %
 – compare two designs on speed or # of errors
• Ease of measurement
 – time is easy to record
 – error or successful completion is harder
 • define in advance what these mean
• Do not combine with thinking-aloud. Why?
 – talking can affect speed & accuracy

Analyzing the Numbers (cont.)

• This is what statistics is for
• Crank through the procedures and you find
 – 95% certain that typical value is between 5 & 55

Analyzing the Numbers (cont.)

<table>
<thead>
<tr>
<th>Participant #</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

number of participants 6
mean 30.0
median 17.5
std dev 31.8

standard error of the mean = stddev / sqrt (nsamples) 13.0

typical values will be mean ± 2*standard error 4 to 56!

what is plausible? = confidence (alpha=5%, stddev, sample size) 25.4 95% confident between 5 & 56

Measuring User Preference

• How much users like or dislike the system
 – can ask them to rate on a scale of 1 to 10
 – or have them choose among statements
 • “best UI I’ve ever…”, “better than average”…
 – hard to be sure what data will mean
 • novelty of UI, feelings, not realistic setting…
• If many give you low ratings → trouble
• Can get some useful data by asking
 – what they liked, disliked, where they had trouble, best part, worst part, etc.
 – redundant questions are OK
Comparing Two Alternatives

• **Between groups** experiment
 – two groups of test users
 – each group uses only 1 of the systems

• **Within groups** experiment
 – one group of test users
 • each person uses both systems
 • can’t use the same tasks or order (learning)
 – best for low-level interaction techniques

Comparing Two Alternatives

• Between groups requires many more participants than within groups
• See if differences are statistically significant
 – assumes normal distribution & same std. dev.
• Online companies can do large AB tests
 – look at resulting behavior (e.g., buy?)

Experimental Details

• Order of tasks
 – choose one simple order (simple → complex)
 • unless doing within groups experiment
• Training
 – depends on how real system will be used
• What if someone doesn’t finish
 – assign very large time & large # of errors or remove & note
• Pilot study
 – helps you fix problems with the study
 – do two, first with colleagues, then with real users

Instructions to Participants

• Describe the purpose of the evaluation
 – “I’m testing the product; I’m not testing you”
• Tell them they can quit at any time
• Demonstrate the equipment
• Explain how to think aloud
• Explain that you will not provide help
• Describe the task
 – give written instructions, one task at a time

Details (cont.)

• Keeping variability down
 – recruit test users with similar background
 – brief users to bring them to common level
 – perform the test the same way every time
 • don’t help some more than others (plan in advance)
 – make instructions clear

• Debriefing test users
 – often don’t remember, so demonstrate or show video segments
 • ask for comments on specific features
 • show them screen (online or on paper)

Reporting the Results

• Report what you did & what happened
• Images & graphs help people get it!
• Video clips can be quite convincing
Automated Analysis & Remote Testing

- Log analysis
 - infer user behavior by looking at web server logs

- A-B Testing
 - show different user segments different designs
 - requires live site (built) & customer base
 - measure outcomes (profit), but not why?

- Remote user testing
 - similar to in lab, but online (e.g., over Skype)

Web Logs Analysis Difficult

Google Analytics – Server Logs++

http://www.redflymarketing.com/blog/using-google-analytics-to-improve-conversions/
Web Allows Controlled A/B Experiments

- Example: Amazon Shopping Cart
 - Add item to cart
 - Site shows cart contents
- Idea: show recommendations based on cart items
- Arguments
 - Pro: cross-sell more items
 - Con: distract people at check out
- Highest Paid Person’s Opinion “Stop the project!”
- Simple experiment was run, wildly successful

Windows Marketplace: Solitaire vs. Poker

Which image has the higher clickthrough? By how much?

A: Solitaire game
B: Poker game

The Trouble With Most Web Site Analysis Tools

Unknowns
- Who?
- What?
- Why?
- Did they find it?
- Satisfied?

NetRaker Usability Research
See how customers accomplish real tasks on site

NetRaker Usability Research
See how customers accomplish real tasks on site
WebQuilt: Visual Analysis

- **Goals**
 - Link page elements to user actions
 - Identify behavior/navigation patterns
 - Highlight potential problems areas

- **Solution**
 - Interactive graph based on web content
 - Nodes represent web pages
 - Edges represent aggregate traffic between pages
 - Designers can indicate expected paths
 - Color code common usability interests
 - Filtering to show only target participants
 - Use zooming for analyzing data at varying granularity

Advantages of Remote Usability Testing

- **Fast**
 - Can set up research in 3-4 hours
 - Get results in 36 hours

- **More accurate**
 - Can run with large samples (50-200 users → stat. sig.)
 - Uses real people (customers) performing tasks
 - Natural environment (home/work/machine)

- **Easy-to-use**
 - Templates make setting up easy

- **Can compare with competitors**
 - Indexed to national norms
Disadvantages of Remote Usability Testing

• Miss observational feedback
 – facial expressions
 – verbal feedback (critical incidents)

• Need to involve human participants
 – costs some amount of money (typically $20-$50/person)

• People often do not like pop-ups
 – need to be careful when using them

Summary

• User testing is important, but takes time/effort
• Early testing can be done on mock-ups (low-fi)
• Use ??? tasks & ????? participants
 – real tasks & representative participants
• Be ethical & treat your participants well
• Want to know what people are doing & why? collect
 – process data
• Bottom line data requires ???? to get statistically reliable results
 – more participants
• Difference between between & within groups?
 – between groups: everyone participates in one condition
 – within groups: everyone participates in multiple conditions
• Automated usability
 – faster than traditional techniques
 – can involve more participants ➔ convincing data
 – easier to do comparisons across sites
 – tradeoff with losing observational data

Next Time

• Interactive Prototype Presentations