Computable Functions

John Mitchell

Reading: Chapter 2

Foundations: Partial, Total Functions

• Value of an expression may be undefined
 — Undefined operation, e.g., division by zero
 — 3/0 has no value
 — Implementation may halt with error condition
 — Nontermination
 • \(f(x) = \) if \(x=0 \) then 1 else \(f(x-2) \)
 • this is a partial function: not defined on all arguments
 • cannot be detected at compile-time; this is halting problem
 — These two cases are
 • "Mathematically" equivalent
 • Operationally different

Partial and Total Functions

- Total function: \(f(x) \) has a value for every \(x \)
- Partial function: \(g(x) \) does not have a value for every \(x \)

Functions and Graphs

- Graph of \(f(x) \): \(\{(x,y) \mid y = f(x)\} \)
- Graph of \(g(x) \): \(\{(x,y) \mid y = g(x)\} \)
Mathematics: a function is a set of ordered pairs (graph of function)

Partial and Total Functions

• Total function \(f: A \rightarrow B \) is a subset \(f \subseteq A \times B \) with
 — For every \(x \in A \), there is some \(y \in B \) with \((x,y) \in f \) (total)
 — If \((x,y) \in f \) and \((x,z) \in f \) then \(y = z \) (single-valued)
• Partial function \(f: A \rightarrow B \) is a subset \(f \subseteq A \times B \) with
 — If \((x,y) \in f \) and \((x,z) \in f \) then \(y = z \) (single-valued)
• Programs define partial functions for two reasons
 — partial operations (like division)
 — nontermination
 \(f(0) = \) if \(x=0 \) then 1 else \(f(x-2) \)

Halting Problem

Entore Buggati: "I build cars to go, not to stop."

Self-Portrait in the Green Buggati (1925)
Tamara DeLempicka
Computability

• Definition
 Function \(f \) is computable if some program \(P \) computes it:
 For any input \(x \), the computation \(P(x) \) halts with output \(f(x) \)

• Terminology
 Partial recursive functions
 = partial functions (int to int) that are computable

• Church-Turing Hypothesis
 The programming language doesn’t matter – all “reasonable” programming languages define the same class of computable functions

Halting function

• Decide whether program halts on input
 - Given program \(P \) and input \(x \) to \(P \),
 \[Halt(P, x) = \begin{cases}
 \text{yes} & \text{if } P(x) \text{ halts} \\
 \text{no} & \text{otherwise}
\end{cases} \]

Clariﬁcations
- Assume program \(P \) requires one string input \(x \)
- Write \(P(x) \) for output of \(P \) when run in input \(x \)
- Program \(P \) is string input to \(Halt \)
- Represent two inputs \(P, x \) as string \(P\!x \) (for example)

Theorem: There is no program for \(Halt \)

Unsolvability of the halting problem

• Suppose \(P \) solves variant of halting problem
 On input \(Q \), assume
 \[P(Q) = \begin{cases}
 \text{yes} & \text{if } Q(Q) \text{ halts} \\
 \text{no} & \text{otherwise}
\end{cases} \]

• Build program \(D \)
 \[D(Q) = \begin{cases}
 \text{run forever} & \text{if } Q(Q) \text{ halts} \\
 \text{halt} & \text{if } Q(Q) \text{ runs forever}
\end{cases} \]

• Does this make sense? What can \(D(D) \) do?
 - If \(D(D) \) halts, then \(D(D) \) runs forever.
 - If \(D(D) \) runs forever, then \(D(D) \) halts.
 - CONTRADICTION: program \(P \) must not exist.

Examples

• Is there an algorithm to decide whether this program has a run-time type error?
 if \(f(x) \) then \(y=1+"Bob" \) else \(y=2+"Alice" \)

• Is there an algorithm to decide whether this program reads variable \(z \)?
 if \(f(x) \) then \(y=z+"Bob" \) else \(y=z+"Alice" \)

Garbage Collection

• Garbage:
 At a given point in the execution of a program \(P \), a memory location \(m \) is garbage if no continued execution of \(P \) from this point can access location \(m \).

• Garbage Collection:
 - Detect garbage during program execution
 - GC invoked when more memory is needed
 - Decision made by run-time system, not program

Main points about computability

• Some functions are computable, some are not
 - Halting problem
 - Other problems that are equivalent

• Programming language implementation
 - Can report error if program result is undefined due to division by zero, other error condition
 - Cannot warn user if program will not terminate
 - Many useful program properties are not computable